



## DPP – 1 (EMI)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/79

Video Solution on YouTube:-

https://youtu.be/gPFtZP3wqjI

а

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/61

Q 1. A metallic ring is attached with the wall of a room. When the north pole of a magnet is brought near to it, the induced current in the ring will be

- (a) No current induced
- (b) In clockwise direction
- (c) In anticlockwise direction
- (d) Depends on magnitude of current
- Q 2. A bar magnet falls with its north pole pointing down through the axis of a copper ring. When viewed from above, the current in the ring will be(a) Clockwise while the magnet is above the plane of the ring and counter clockwise
  - while below the plane of the ring.
  - (b) Counter clockwise throughout

(c) Counter clockwise while the magnet is above the plane of the ring and clockwise while below the plane of the ring.

(d) Clockwise throughout

Q 3. The horizontal component of earth's magnetic field is  $3 \times 10^{-5} Wb/m^2$ . The magnetic flux linked with a coil of area  $1 m^2$  and having 5 turns, whose plane is normal to the magnetic field, will be

| <b>U</b>                   |                           |
|----------------------------|---------------------------|
| (a) $3 \times 10^{-5} Wb$  | (b) $5 \times 10^{-5} Wb$ |
| (c) $15 \times 10^{-5} Wb$ | (d) Zero                  |

Q 4. A square coil of 600 turns, each side 20cm, is placed with its plane inclined at  $30^{0}$  to a uniform magnetic field of  $4.5 \times 10^{-4} Wb/m^{2}$ , Find the flux through the coil (a)  $35 \times 10^{-5} Wb$  (b)  $54 \times 10^{-4} Wb$  (c)  $51 \times 10^{-5} Wb$  (d) Zero





Q 5. A coil having an area  $A_o$  is placed in a magnetic field (plane of coil is perpendicular to magnetic field) which changes from  $B_o$  to  $4B_o$  in time interval t. The e.m.f. induced in the coil will be

| (a) $\frac{3A_0B_0}{t}$  | (b) $\frac{4A_0B_0}{t}$         |
|--------------------------|---------------------------------|
| (c) $\frac{3B_o}{A_o t}$ | (d) $\frac{4\ddot{A}_o}{B_o t}$ |

Q 6. A coil of area 10  $cm^2$  and 10 turns is in magnetic field directed perpendicular to the plane and changing at a rate of  $10^8$  gauss/s. The resistance of coil is 20 $\Omega$ . The current in the coil will be

| (a) 0.5 A  | (b) $5 \times 10^{-3}$ A |
|------------|--------------------------|
| (c) 0.05 A | (d) 5 A                  |

- Q 7. A coil having an area  $2m^2$  is placed in a magnetic field which changes from 1 Wb/ $m^2$  to 4 Wb/ $m^2$  in an interval of 2 second. The average e.m.f. induced in the coil will be (a) 4V (b) 3V (c) 1.5V (d) 2V
- Q 8. A magnetic field of flux density 1.0 Wb  $m^{-2}$  acts normal to a 80 turns coil of 0.01  $m^2$  area. Find the e.m.f. induced in it, if this coil is removed from the field in 0.1 second (a) 2V (b) 4V (c) 0.8V (d) 8V
- Q 9. The magnetic flux linked with coil, in weber is given by the equation  $\phi = 5t^2 + 3t + 16$ . The average induced emf in the coil in the fourth second is (a) 38 V (b) 30 V (c) 45 V (d) 90 V
- Q 10. The magnetic flux linked with a coil is given by an equation  $\phi(\text{in webers}) = 8t^2 + 3t + 5$ . The magnitude of induced e.m.f. in the coil at t = 4 second will be (a) 16V (b) 39V (c) 67V (d) 145V
- Q 11. A circular loop is placed in magnetic field B = 2t. Find the direction of induced current produced in the loop



- (a) Clock wise (b) Anti-clock wise
- (c) Can't determine (d) none of these





## **Answer Key**

| Q.1 c  | Q.2 | C           | Q.3 | C        | Q.4  | b          | Q.5 a        |
|--------|-----|-------------|-----|----------|------|------------|--------------|
| Q.6 d  | Q.7 | b           | Q.8 | d        | Q.9  | a          | Q.10 c       |
| 0.11 b |     |             |     |          |      | 0          |              |
|        |     |             |     |          |      |            | $\mathbb{N}$ |
|        |     |             |     | Π        |      |            | , ac         |
|        |     |             | 2   | L        | , Dr |            | , n(Ce       |
|        |     | R           |     | 0.0      | 0    | $\bigcirc$ |              |
| ſ      | 291 | //[         |     | $\frown$ | PH   | $\bigcirc$ |              |
|        |     |             |     |          | 20.  |            |              |
| 0/12   | 50  | 21          |     | 20       |      |            |              |
| $\Box$ | 2   | $ S\rangle$ | U   |          |      |            |              |
| 6      | 20) | 7           |     |          |      |            |              |
| R .    | U   |             |     |          |      |            |              |